Overview of Needs on the Ground and Surveillance Issues

The Case of India

Dr Kamini Walia,
Division of Epidemiology and Communicable Diseases
Indian Council of Medical Research
Indian Council of Medical Research (ICMR)

The apex body in India for the formulation, coordination and promotion of biomedical research under Department of Health Research, Ministry of Health and Family Welfare, Government of India

To undertake and support basic, epidemiological, applied and operational research in the areas of national public health importance using tools including those of modern biology

Intramural research is carried out through the Council's theme oriented 33 permanent research institutes/centers and including 6 regional centers addressing to regional health problems

Extramural research is done through center for advanced research, task force projects, ad hoc research schemes and fellowships in different universities, medical colleges in the country.
Why are resistance rates so high in India?
Infectious Diseases in India

• Huge burden of infectious diseases
 – Malaria, TB, HIV/AIDS, vector borne diseases, Influenza, other outbreaks
 – Diarrhea, pneumonia
• Sanitation conditions, malnutrition
• Close animal human interface
Management of infectious diseases is often mishandled

- India has one doctor per 1700 patients
- 70% of health care is dispensed through private sector
- Practitioners of alternate systems
- Wide urban-rural gap in the availability of medical services
- Infectious disease specialists/guidelines missing link
- Diagnostics under recognized underexploited tool for resistance containment
Resistance is accelerated through inappropriate use of antimicrobials

- Absence/ nonadherence to Standard treatment guidelines
- Drugs available without prescription
- Poor quality drugs
- Improper prescription
- Poor compliance
- Irrational self-administration

Antimicrobial resistance
Antibiotic overuse

- $12.4 billion pharmaceutical industry
- Regulations over sale of antibiotics
- Over the counter availability of antibiotics
- Use of antibiotics in livestock, poultry and agriculture

Evolution of antibiotic resistance is a consequence of selective pressure
Trends in recent past

- **MDR-TB** in new smear positive cases is ≤3 % and 12-17% in smear positive previously treated cases
- **Malaria**: Chloroquine failure rate 35%, Sulfapyramethamine 26%
- **Gonorrhoea** widely resistant to penicillin & fluoroquinolones, increasing against cephalosporins
- **Compromising the gains made in control of infectious disease through national programs**

Multi-drug resistant and extensively drug resistant TB cases in India: ICMR consultation, 2012
Sethi et al 2006 Deshpande et al 2011, Thoral et al 2011
Role for antibiotics not limited to infectious diseases

- Prevalence of MRSA approx 20-40%
- Enterobacteriaceae: ESBLs - prevalence of 30-65%, 80% in ICUs
- Infections with drug resistant Acinetobacter baumanii and Pseudomonas sps. In ICUs, hospital setting
- VAPs, CAIs, CLBSIs
- Knee and Hip replacements
- Transplants
- Cancer treatments
- Caesarean sections
ANTIMICROBIAL RESISTANCE RESEARCH INITIATIVE
Surveillance and Stewardship

- Strengthening surveillance research in AMR
- Stewardship activities:
 - Treatment guidelines
 - Infection control guidelines
 - Understanding the Prescription practices
 - Addressing the missing infectious disease link

Research

- Epidemiology
- Prescription practices, cycling and combinations
- New approaches for drug delivery
- New drug targets
- New antimicrobial candidates
- Vaccine candidates
Need for national response to Antimicrobial resistance

- Most of available data from small studies in labs or medical institutes
- Methodology, uniformity issues
- Not representative of trends and patterns in general population as data from hospital patients and very sick patients
- Need for nationwide understanding drug resistance mechanisms, patterns, clonality
- To guide treatment and prevention interventions based on country specific scientific evidence
AMR activities in ICMR

- Strengthening surveillance research in AMR through network of labs
 - Mechanisms of resistance
 - Systems biology: new drug targets, POC diagnostics

- Stewardship activities:
 - Understanding current AMSP practices: underlying factors
 - Understanding the Prescription practices
 - Treatment guidelines
 - Infection control guidelines
 - Infectious disease link
Antimicrobial Research and Surveillance Network at ICMR

Nodal centres are focal points for six pathogenic groups:

- *Enterobacteriaceae / sepsis (PGIMER)*
- Gram negative non-fermenters (CMC)
- Enteric fever organisms (AIIMS)
- Diarrhoeagenic organisms (CMC)
- MRSA, Enterococcus (JIPMER)
- Fungal pathogens (PGIMER)

- Data management unit in Bioinformatics Center, ICMR Hq

15 Regional Centres (RC) proposed
IMPERATIVES

- Standardisation & Uniformity
 - Standard Operating Procedures (SOPs Bacteriology, Mycology)
 - Training
- External Quality Assurance
- Going beyond simplistic science:
 - Next generations sequencing
AMR Network
Roles and responsibilities

- Nodal Centres
 - Phenotypic tests
 - Genotypic tests for mechanism of resistance and clonality of isolates
 - Repository of relevant Isolates
 - Act as training hubs for other hospitals
 - Data validation
 - Communicate Nationally, Internationally
AMR Network
Roles and responsibilities

- Regional Centers
 - Defined geographical area of responsibility
 - Receive training from NCs & become hub of training for its specified region
 - Isolate, identify, AMST, store microbes
 - Transport predefined representative DR, DS isolates to NCs
 - Over time period, take over part or full responsibilities of NCs
 - In tune with NCs, develop AMSP for region
EMERGING PICTURE OF AMR IN HOSPITALS
Present Cumulative Antibiogram Of Typhoidal Salmonellae

- **S. typhi** multidrug resistance (MDR): 100% sensitive to ampicillin, chloramphenicol and cotrimoxazole, cefixime
- High resistance to FQ, Ciprofloxacin in *S. typhi* is increasingly reported
Percentage resistance of *S. aureus* isolates for all centres

- PEN: 89.2%
- CIP: 63.3%
- TET: 36.9%
- FOX: 35.7%
- VAN: 17.8%
- GEN: 50.4%
- ERY: 25%
- CLI: 0.2%
- LNZ: 0%
- TEC: 0%
- MUP: 1.9%
- SXT: 45.7%
Percentage resistance of CoNS isolates for all centres

<table>
<thead>
<tr>
<th>Drug</th>
<th>Resistance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEN</td>
<td>85.7</td>
</tr>
<tr>
<td>CIP</td>
<td>48.4</td>
</tr>
<tr>
<td>TET</td>
<td>24.5</td>
</tr>
<tr>
<td>FOX</td>
<td>66.5</td>
</tr>
<tr>
<td>VAN</td>
<td>4.8</td>
</tr>
<tr>
<td>GEN</td>
<td>22.9</td>
</tr>
<tr>
<td>ERY</td>
<td>72.3</td>
</tr>
<tr>
<td>CLI</td>
<td>43.6</td>
</tr>
<tr>
<td>LNZ</td>
<td>0.9</td>
</tr>
<tr>
<td>TEC</td>
<td>1</td>
</tr>
<tr>
<td>MUP</td>
<td>27</td>
</tr>
<tr>
<td>SXT</td>
<td>62</td>
</tr>
</tbody>
</table>
Increasing glycopeptide resistance in *Enterococci* (e.g. VRE) and increasing mupirocin resistance in *S. aureus* is causing concern.
Antimicrobial susceptibility of *N. gonorrhoeae* in Pune from 1996 to 2007

Indian J Sex Transm Dis. 2011

Antimicrobial susceptibility of *N. gonorrhoeae* identified as part of genetic studies in 2007-8 & 14-15

Sex Transm Dis. 2012

Un Published
Shigella spp.

High resistance to nalidixic acid
50% R to norfloxacin and ampicillin

Association of ESBL genes with qnr genes – rare among Indian isolates

bla_{CTX-M-15} occurrence in *Shigella spp* increases the threat for spread of cephalosporin resistance among Enterobacteriaceae

<table>
<thead>
<tr>
<th>Organism</th>
<th>Genes for sulfonamide resistance</th>
<th>Genes for β-lactam resistance</th>
<th>Genes for quinolone resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 31)</td>
<td>dhfr1a</td>
<td>Sul II</td>
<td>bla_{OXA}</td>
</tr>
<tr>
<td>S. flexneri (n = 22)</td>
<td>22</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>S. sonnei (n = 6)</td>
<td>6</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>
Until 2005, resistance to carbapenem in Enterobacteriaceae had not been observed

2012: it is estimated that 5% of \textit{E. coli} and up to 40% of \textit{Klebsiella spp} resistant to carbapenem

A higher percent of susceptibility to colistin (>90%), tigecycline (up to 59%) followed by aztreonam and amikacin
Enterobacteriaceae
Klebsiella spp. and E. coli cause most of infections

100% sensitive to colistin followed by imipenem and meropenem (60%)

E. Coli from sterile body fluids

Klebsiella spp from sterile body fluids
Non-fermenting gram negative bacilli (NFGNB)

• Acinetobacter species 60% isolates, Pseudomonas species 24%, Strophomonas species 4%, Burkholderia species 4%.
• A baumannii isolates showed maximum susceptibility was to colistin (99%) followed by imipenem (53%) and meropenem (53%).
• Susceptibility for amikacin has increased by 23% from 2014-2015

• All isolates of P aeruginosa were susceptible to colistin, followed by imipenem (85%), amikacin (80%), ciprofloxacin (80%), piperacillin-tazobactam (58%) and meropenem (50%)
• Almost all antibiotics seems to have >70% susceptibility
No. of genes identified in CRO multiplex PCR reaction 2015

<table>
<thead>
<tr>
<th>ORGANISM</th>
<th>NC</th>
<th>‘n’</th>
<th>SP M</th>
<th>IMP</th>
<th>VIM</th>
<th>NDM</th>
<th>OXA-48</th>
<th>KPC</th>
<th>Oxa23</th>
<th>24</th>
<th>58</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMC</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIIMS</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JIPME</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter sp.</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JIP ME R</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiple resistance coding gene presence *Pseudomonas aeruginosa* and *Acinetobacter baumannii*
- the reason for increased MIC
- resulting in requirement of combination therapy with high dose and extended duration.

- *Oxa* 23 is mo, *Oxa* 51 re prevalent in *Acinetobacter spp*
- *VIM* and *NDM* continue to be prevalent among CRO’s
13 carbapenem resistant *P. aeruginosa* isolates of imipenem resistant/meropenem susceptible and/or meropenem resistant/imipenem susceptible.

- Negative for AMR genes were selected for efflux and porin mechanism analysis
- *oprD* gene sequencing- down regulated, which was the reason for this isolate to be resistant to imipenem but not to meropenem
Pseudomonas aeruginosa Susceptibility Pattern 2014

The graph illustrates the susceptibility pattern of *Pseudomonas aeruginosa* to various antibiotics in 2014 across different institutions:

- **CMC Susceptible (%)**
- **AIIMS Susceptible (%)**
- **JIPMER Susceptible (%)**
- **PGIMER Susceptible (%)**

The antibiotics tested include:
- Cefazidime
- Amikacin
- Imipenem
- Meropenem
- Colistin
- Cefepine
- Aztreonam
- Piperacillin/Tazobactam
- Levofloxacin
- Tobramycin

The data shows the percentage of susceptibility for each antibiotic across the institutions.
Antimicrobial Stewardship Program
Survey of AMSP Practices 2013

• Hospital or Lab accreditations
• AMSP, infection control and treatment guidelines
• AMSP team: ID physician, clinical pharmacist, IT specialist,
• Frequency of meetings, circulation of minutes
• Anti Microbial Resistance Data Analysis
• Anti Microbial Agents Usage Data Analysis
• AMSP Outcome analysis
Survey of AMSP Practices

- 20 Hospitals: 13 public and 7 private
- Accreditations better in private hospitals
- AMSP documents in 4/20 hospitals
- Infection control document in 20/20
- Most hospitals did not have infectious disease physicians and clinical pharmacists

- Anti Microbial Resistance Data Analysis 20/20
- Anti Microbial Agents Usage Data Analysis 5/20
- AMA Prescription Audit & Feedback practised by 2/20
- Comprehensive treatment guidelines missing in most hospitals
 - Syndrome specific guidelines frequently available
- AMSP not linked with IT system in most hospitals
Special Report

Indian J Med Res 142, August 2015, pp 30-38

Antimicrobial stewardship programme (AMSP) practices in India

Kamini Walia, V.C. Ohri & Dilip Mathai* for Antimicrobial Stewardship Programme of ICMR

Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi & *Apollo Institute of Medical Sciences & Research, Hyderabad, India
Building collaborations

- Center for Disease Control, USA
 - Strengthening infection control
- National Institute of Allergy and Infectious Diseases, NIH, USA
 - Systems biology of AMR
 - Epidemiology of neonatal sepsis
 - Clinical trials for new entities
- Research Council Norway, Norway
 - Methods for assessment of the burden of resistance
 - Integrated project surveillance systems for AMR and antibiotic use in humans and/or animals.
 - Ecological, evolutionary and molecular studies of AMR in clinical and non-clinical environments.
Way forward....

- Sustain and strengthen quality data collection
- Antibiotic resistance data from the livestock and poultry
- Evidence that stewardship practices are effective
 - Improving quality of antimicrobial prescribing
 - Strengthen infection control
• Expand understanding of antimicrobial resistance: horizontal and vertical

• Wok with industry
 • to identify potential new drug targets and new drug molecules
 • address the diagnostics gap
 • address infection control in nosocomial settings
Priority areas for future
Diagnostics

• A point of care test to rapidly and accurately differentiate between viral and bacterial infections is needed. For example, a much improved version of serum procalcitonin or molecular signature patterns.
Priority areas for Clinical Research

- One or more effective oral options for the treatment of ESBL Enterobacteriaceae
- Effective parenteral options for the treatment of carbapenemase (esp NDM-1) producing Enterobacteriaceae
- Randomised controlled trials to decide the role of monotherapy versus combination therapy for carbapenem resistant gram negative bacteria
- *In-vitro* culture susceptibilities of resistant bugs to forgotten or re-purposed
- Trials on PK/PD to optimise administration of antibiotics in Indian patients
- Role of EDTA adjuvants in clinical practice, to overcome resistance may be elucidated.
Industry

- Good surveillance data on key HAI pathogens and current AMR profiles pan-India – urban, rural, tier 1-2 cities, public aided hospitals, private hospitals etc.
- Conducive investment climate to enable discovery of next generation novel antibiotics
- Sharing of the research cost for the development of new drugs among governments, pharmaceutical industry, health systems, development agencies and large charitable foundations.
• Antibiotic research fund to fund Biotechs/Pharma companies that work in the new-mechanism area.

• Simplified regulations to allow for faster approvals for trials and extended patent rights
WHAT DOES NOT KILLS MAKES YOU STRONGER